
Solid Merchant Funded Rewards - Powered by Dosh

Overview

How it Works

Terms & Conditions

Mobile SDK Integration

Requirements

Getting Started

1. Add the SDK Dependency

2. Initialize the SDKs

a) User Location

b) Initialize

c) Implement User Authorization Callback

4. Presenting the Rewards Experience

Mobile SDK - Theming

Web Experience - Integration

Initialize and trigger rewards web experience

Webhook Notifications

Page 1 of 18

Solid Merchant Funded Rewards - Powered by Dosh

Overview

The rewards solution makes it simple for platforms to increase card value by leveraging
the Solid platform. The primary integration path is through an embeddable mobile rewards
experience that showcases a rich variation of oer content through a series of provided
modules.

The oer’s module supports a wide variety of oer content including: In-store oers,
online oers, featured oers / just for you, oers by category, local / nearby oers, curated
oer collections, limited time oers, and more.

Page 2 of 18

Solid Merchant Funded Rewards - Powered by Dosh

How it Works

Terms & Conditions
hps://help.solidfi.com/hc/en-us/articles/9196440416539

Mobile SDK Integration

The Mobile SDK makes it quick and easy to build an excellent rewards experience into your
existing mobile application.

The Mobile SDK is a native iOS and Android library for showcasing cardholder rewards. It's
an embeddable rewards experience that enables you to showcase a rich variation of oer
content using provided modules.

Requirements

iOS

The SDK requires Xcode 13.0 or higher. It is compiled using the iOS 14 SDK and is
compatible with apps targeting iOS 13 or above.

Android

The SDK requires a minSdkVersion of 21 and is built with a targetSdkVersion of 29.

Page 3 of 18

https://help.solidfi.com/hc/en-us/articles/9196440416539-Card-Rewards-Terms-Powered-by-Dosh
https://help.solidfi.com/hc/en-us/articles/9196440416539

Solid Merchant Funded Rewards - Powered by Dosh

Geing Started

Integrating the Mobile SDK consists of adding the SDK to your mobile project and
initializing it using your provided API key.

1. Add the SDK Dependency

iOS

Framework Installation

1. Direct Downloads

Direct download is available from the following URL. Replace <major.minor.patch> in the
URL with the SDK version you would like to download.

hps://poweredby-sdk-release.dosh.com/ios/2.8.0/PoweredByDosh.zip

1. Drag PoweredByDosh.xcframework into your project navigator to add
it to your project file.

2. Select your target, and in the General configuration tab add
PoweredByDosh.xcframework to the Frameworks, Libraries, and
Embedded Content section. Set the framework to Embed & Sign

3. (Recommended) Support crash symbolication
Crash symbolication is enabled by including the PoweredByDosh
dSYMs and BCSymbolMaps into your app's built archive.

● Xcode 12 - Crash symbolication is automatically supported when
compiling with Xcode 12 or later.

● Xcode 11 - To enable crash symbolication when compiling with
Xcode 11, add a Run Script Build Phase after the Embed
Frameworks build phase for your target, and execute the
following script:

Execute script to manually copy debug symbols into your built app.
NOTE: Replace "${PROJECT_DIR}/Frameworks" with the correct path for your project.
Bash "${PROJECT_DIR}/Frameworks/PoweredByDosh.xcframework/copy-framework-symbols.sh"

Page 4 of 18

https://poweredby-sdk-release.dosh.com/ios/

Solid Merchant Funded Rewards - Powered by Dosh

2. CocoaPods

The SDK is provided as a precompiled xcframework and may be included in your project
through:

Include the following declaration in your Podfile:

1. # Podfile
2. pod 'PoweredByDosh'

Crash symbolication is automatically supported when including the dependency with
CocoaPods.

Note: CocoaPods version 1.10.0 or later is required for binary xcframework dependencies.

3. Swift Package Manager

Swift Package Manager is available for SDK versions 2.3.0 and later when building with
Xcode 12 by using the following URL as the package source:

https://github.com/dosh-com/powered-by-dosh-ios-releases.git

When integrating the package, you will have the option to choose which framework
targets to include.

Crash symbolication is automatically supported when including the dependency with
Swift Package Manager.

Android

The SDK can be accessed via our maven repository. Please add the following to the
buildscript block in your root build.gradle script:

allprojects {
...
repositories {

...

Page 5 of 18

https://github.com/CocoaPods/CocoaPods/releases/tag/1.10.0

Solid Merchant Funded Rewards - Powered by Dosh

//The maven repository for Dosh.
maven {

url = "https://dosh.jfrog.io/dosh/libs"
//Note: There is a bug with Artifactory and though this

is a public repository
// you will need to submit blank credentials in

order for access to the repository.
credentials {

username = ""
password = ""

}
}

}
}

Then in your dependency block in your app build.gradle add the following:

implementation('com.dosh:poweredby:2.7.0')

The SDK includes the ability to display Oers on a map. In order to support that
functionality you will need to provide a Google Maps key via your application manifest. To
generate that key please follow these instructions.

The SDK uses the RxJava library version 1.2.0. If your project is also using RxJava version
1.x.y and want to avoid collisions or our version overriding yours add the following:

implementation('com.dosh:poweredby:2.7.0'){
exclude group: 'io.reactivex', module: 'rxjava'

}

2. Initialize the SDKs

The first call that you make to the SDK should be to initialize. Below is the
dosh-application-id which needs to be used within the app.

dosh-application-id = <To be provided via secure email>

Page 6 of 18

https://developers.google.com/maps/documentation/android-sdk/get-api-key

Solid Merchant Funded Rewards - Powered by Dosh

Following are the three steps to be followed for SDK initialization.

a) User Location

The user's current location can be passed into the SDK using the userLocation property.
This location will be used to provide more relevant oers to the user. Updating the
location does not automatically reload the feed, but will be used in any subsequent
network queries. Because of this, it is recommended to pass in the user's location before
presenting the SDK.

Note that the userLocation field is an optional parameter. If location is not directly
provided, the experience will degrade to leveraging location context associated with
the IP Address of the incoming request. This context will be used to approximate the
user's location and return local oers relative to that approximation. Local oers require
location context to be displayed and leveraging IP-based geo ensures that content is
always available to the end user.

iOS

Dosh.instance?.userLocation = CLLocation(latitude: 30.275039, longitude:
-97.740320)

Example:
//pass the user's location before Dosh.initialize..
let isLocationEnabled = LocationHelper.shared.isLocationEnable()
if isLocationEnabled {
let latitude = LocationHelper.shared.latitude
let longitude = LocationHelper.shared.longitude

Dosh.instance?.userLocation = CLLocation(latitude: latitude, longitude:
longitude)

}

Android

val location = android.location.Location(LocationManager.GPS_PROVIDER).apply {
latitude = 30.275039
longitude = -97.740320

}
PoweredByDosh.instance?.userLocation = location

Example:

val location = android.location.Location(LocationManager.GPS_PROVIDER).apply {
latitude = currentLat
longitude = currentLong

Page 7 of 18

Solid Merchant Funded Rewards - Powered by Dosh

}
PoweredByDosh.instance?.userLocation = location

b) Initialize

Call Solid platform API to get DOSH token:

PROD-TEST: https://test-api.solidfi.com/v1/card/doshtoken
PROD-LIVE: https://api.solidfi.com/v1/card/doshtoken

iOS

// This should be done before any other calls to the PoweredByDosh SDK.
let dosh = Dosh.initialize(applicationId: "dosh-application-id")

/// Enabling this will print integration related logs to the console
dosh.debugLoggingEnabled = true

Android

// This should be done before any other calls to the PoweredByDosh SDK.
var dosh = PoweredByDosh.initialize("dosh-application-id", applicationContext)

Example:

dosh = PoweredByDosh.initialize(dosh-application-id, this)

c) Implement User Authorization Callback

For the SDK to provide user-specific content, the user authorization callback must be
implemented. User authorization between your app and Dosh is coordinated by providing
the SDK with an authorization token that is signed with a secret key that we both share.

From the app's perspective, the SDK provides a closure that we will call at any point in time
when a new authorization token is needed. You can expect a token to be requested when:

1. The experience is launched the first time.
2. User information is cleared.
3. The existing token is expiring.

iOS

Page 8 of 18

Solid Merchant Funded Rewards - Powered by Dosh

// Call Solid API /v1/card/doshtoken to get JWT token and pass to completion

dosh.userAuthorization = { completion in
// Implement call to your server to generate a signed token.
// When complete, call the completion block, passing in the
// signed token. If your request for the token fails, then
// pass nil into the completion block.

//Exmaple:
<doshTokenAPIcallMethod> { (response, errorMessage) in

guard errorMessage == nil else {
completion(nil)
return

}
completion(response?.accessToken)

}
}

//Sandbox Testing:

dosh.userAuthorization = { completion in
completion("eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJEdW1teVVzZXJJZDEyMyIsImlzcy
I6InNsZGZpOjkwZDFjMmU0LTBlNGYtNDE0ZC1iZjg3LTQ3YWRjZmUzNDdmNSIsImV4cCI6MTY5OTQ0NTE2NSwia
nRpIjoiODlhMDQ4N2Y2ZTFhNGUxMGEyNDUwNDE0MjgzMzQ0YTgifQ.DD18arXzdwN4tVSvg6tSZ8mTF9TP6Jf-C
09fwJFOthM")

}

Any time the app’s current user changes, such as when the user logs out, the user's
information should be cleared from the SDK�

dosh.clearUser()

Android

// Call Solid API /v1/card/doshtoken to get JWT token and pass to completion

dosh.authorize { sessionTokenResponse ->
// Implement call to your server to generate a signed token.
// When complete, call the sessionTokenResponse lambda, passing
// in the signed token.
...
sessionTokenResponse("server-generated-jwt")

}

Example:
dosh.authorize {

it(doshSessionToken)

Page 9 of 18

Solid Merchant Funded Rewards - Powered by Dosh

}

//Sandbox Testing:

dosh.authorize {
it("eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJEdW1teVVzZXJJZDEyMyIsImlzcyI6InNsZ
GZpOjkwZDFjMmU0LTBlNGYtNDE0ZC1iZjg3LTQ3YWRjZmUzNDdmNSIsImV4cCI6MTY5OTQ0NTE2NSwianRpIjo
iODlhMDQ4N2Y2ZTFhNGUxMGEyNDUwNDE0MjgzMzQ0YTgifQ.DD18arXzdwN4tVSvg6tSZ8mTF9TP6Jf-C09fwJ
FOthM")

}

Any time the app's current user changes, such as when the user logs out, the user's
information should be cleared from the SDK�

dosh.clearUser()

4. Presenting the Rewards Experience

Presenting the rewards experience displays a full-screen view that is managed by the
SDK. The section below on theming will cover how to style this view to match the look of
your app.

iOS

To present the experience on iOS, call the presentRewards(from:) function in the SDK,
passing in a view controller to be used as the presenting view controller for a modal
presentation.

class MyViewController: UIViewController {
...
@IBAction func openDoshRewards() {

Dosh.instance?.presentRewards(from: self)
}

}

Alternatively, there is a debugging experience that can be presented to assist with initial
integration of the SDK. This experience is intended to only be used by the engineers
integrating the SDK, and is not intended to be shown to consumers. The experience
provides a visual representation of: the visual theme that was provided and validation of
the authentication integration. To present this experience:

class MyViewController: UIViewController {

Page 10 of 18

Solid Merchant Funded Rewards - Powered by Dosh

...
@IBAction func openDoshIntegrationChecklist() {

Dosh.instance?.presentIntegrationChecklist(from: self)
}

}

Android

To present the experience on Android, call the showDoshRewards function in the SDK,
passing in the context to be used to display the DoshRewardsActivity.

class MainActivity : AppCompatActivity() {

private fun openDoshRewards() {
PoweredByDosh.instance?.showDoshRewards(this)

}
}

Alternatively, there is a debugging experience that can be presented to assist with initial
integration of the SDK. This experience is intended to only be used by the engineers
integrating the SDK, and is not intended to be shown to consumers. The experience
provides a visual representation of: the visual theme that was provided and validation of
the authentication integration. To present this experience:

class MainActivity : AppCompatActivity() {

private fun openDoshIntegrationChecklist() {
PoweredByDosh.instance?.presentIntegrationChecklist(this)

}
}

Mobile SDK - Theming

The Mobile SDK makes it easy to customize the default theme of the SDK to match your
custom branding. This document helps outline how the provided values map to the
current experience and how to override them.

Fonts and Colors

The SDK uses four dierent font weights (light, regular, medium, and bold) and three main
color variations (header, primary, and interactive). The following code samples
demonstrate how to override those values. To beer understand how those values map to
various pieces of the UX, click here to see a visual representation.

Page 11 of 18

https://www.figma.com/file/F79S7NYeMOChB2IVCAdWwY/SDK-Root-Template-V1.1?node-id=260%3A4587

Solid Merchant Funded Rewards - Powered by Dosh

iOS

To support this in your iOS app, create a concrete implementation of the
PoweredByDoshTheme protocol. The protocol requires that the main colors be defined,
but provides default values for the fonts, gray colors, and interactive elements so that
they can be optionally overridden. The following example provides the main colors and
custom fonts, but chooses to use the default values for everything else:

struct CustomTheme: PoweredByDoshTheme {
var headerColor: UIColor { UIColor.red }
var primaryColor: UIColor { UIColor.green }
var interactiveColor: UIColor { UIColor.blue }
var boldFontName: String? { "MarkOT-Bold" }
var mediumFontName: String? { "MarkOT-Medium" }
var regularFontName: String? { "MarkOT-Book" }
var lightFontName: String? { "MarkOT-Light" }

}

Android

To support this in your Android app, you can also override the color and font values that
are in the PoweredByDoshTheme by specifying what values you want to override in your
colors.xml file

In your colors.xml resource file

<color name="dosh_core_header">Your color here</color>
<color name="dosh_core_primary">Your color here</color>
<color name="dosh_core_interactive">Your color here</color>

And to override the fonts, you can upload your own font type in your font folder.
Afterwards create a font-family resource file for each font you want to override from us.

Our current default font family names are

● dosh_font_bold
● dosh_font_medium
● dosh_font_regular
● dosh_font_light

To be able to use your own fonts, you’ll have to create a font family with the same name as
one of the above font family names. For example, if you wanted to override our
dosh_bold_font you would create a resource in the font folder by the name
dosh_bold_font.xml and specify your custom font within the aributes.

Page 12 of 18

Solid Merchant Funded Rewards - Powered by Dosh

<?xml version="1.0" encoding="utf-8"?>
<font-family xmlns:android="http://schemas.android.com/apk/res/android">

<font
android:font="@font/your_font_name"
android:fontWeight="400"
android:fontStyle="normal"/>

</font-family>

You'll have to create a font family for each font you want to override

Since Fonts in XML are a newer feature on Android, you can learn more about them here

Page 13 of 18

https://developer.android.com/guide/topics/ui/look-and-feel/fonts-in-xml

Solid Merchant Funded Rewards - Powered by Dosh

Navigation Bar

iOS

The SDK also supports theming the navigation bar used throughout the SDK experience. If
the SDK theming is not provided, then the navigation bar defaults to the primary theme
color as the background with white UI elements.

struct CustomTheme: PoweredByDoshTheme {
...
var navigationBarStyle: DoshNavigationBarStyle = DoshNavigationBarStyle(

backgroundColor: UIColor.white,
separatorColor: UIColor(hex: "d6dbe0"),
backButtonImage: UIImage(named: "myBackButton")!,
titleTextStyle: DoshTextStyle(weight: .medium, size: 16, color:

UIColor.black))
}

Android

In your colors.xml resource file

<color name="dosh_core_navigation_bar_title">Your color here</color>
<color name="dosh_core_navigation_bar_background">Your color here</color>
<color name="dosh_core_navigation_bar_back_button">Your color here</color>
<color name="dosh_core_navigation_bar_separator">Your color here</color>

For the navigation bar font, you can override our dosh_font_navigation_bar. To do so,
create a resource in the font folder by the name dosh_font_navigation_bar.xml, and then
specify your custom font within the aributes.

The back buon icon can also be overridden by adding a Drawable resource with the name
dosh_nav_back_buon.xml. If you override this resource, please ensure the color of your
Drawable is the same color as dosh_core_navigation_bar_back_buon in your
colors.xml.

Our Activity uses the theme, PoweredBy.Default.Main. If you would like to customize items,
like the status bar or navigation bar color, you can do so by overriding our theme and then
the items you would like customized.

<style name="PoweredBy.Default.Main">
<item name="android:statusBarColor">@color/colorPrimaryDark</item>
<item name="android:navigationBarColor">@color/colorPrimaryDark</item>

</style>

Page 14 of 18

Solid Merchant Funded Rewards - Powered by Dosh

Supported Theme Overrides

Note: currently we do not support the ability to customize all of our
PoweredBy.Default.Main theme. The following is a list of items that can be safely
customized.

● android:statusBarColor
● android:navigationBarColor
● android:windowLightNavigationBar

Program Name

When you first launch the SDK you’ll notice the navigation bar title defaults to Oers.
Additionally, if you’re leveraging the optional account summary module, you’ll notice the
title there defaults to Oers Summary. These titles are configurable to match the
nomenclature of your specific program. For example, If your program refers to oers as
Rewards, you could set that as the program name and it would update the feed title to
Rewards and the account summary title to Rewards Summary. To update the program
name, please refer to the following examples.

iOS

dosh.rewardsProgramName = "Rewards"

Android

dosh.rewardsProgramName = "Rewards"

Section Titles

The section titles in the oers feed can be customized. These fields are configured
server-side, so please work with your Partner Manager if you prefer a value other than the
default.

Page 15 of 18

Solid Merchant Funded Rewards - Powered by Dosh

Logo and Header Styles

Another optional theming feature is the ability to customize logo image treatments as well
as the header shape on the view showing details about a selected merchant. Logos can
either have a circular or rounded rectangle treatment. The header shape be either be
diagonal across the screen or rectangular. To beer understand how those values visually
eect the UX, click here to see a visual representation.. An example choosing circular
logos and a rectangular header is shown below:

iOS

struct CustomTheme: PoweredByDoshTheme {
...
let logoStyle: DoshLogoStyle = .circular
let brandDetailsHeaderStyle: DoshBrandDetailsHeaderStyle = .rectangular

}

Then assign the theme to the PoweredByDosh instance after the SDK has been initialized:

Example:

let dosh = Dosh.initialize(applicationId:"dosh-application-id")
dosh.theme = CustomTheme()

Android

Example:

val uiOptions = PoweredByUiOptions("Rewards", DoshLogoStyle.CIRCLE,
DoshBrandDetailsHeaderStyle.RECTANGLE)

Page 16 of 18

https://www.figma.com/file/F79S7NYeMOChB2IVCAdWwY/SDK-Root-Template-V1.1?node-id=260%3A4587

JavaScript

Solid Merchant Funded Rewards - Powered by Dosh

Web Experience - Integration

Web Experience provides a technology agnostic way to quickly and easily integrate our
comprehensive rewards experience into your existing web application.

The integration point between your application and our technology is a dynamically built
URL, which your application can use to initialize and present rewards Web Experience to
your consumer.

Initialize and trigger rewards web experience

1. Make a post call on PROD�TEST or PROD�LIVE url seing ‘sd-person-id’ header
2. Fetch accessToken from response and generate JWT token
3. Once a valid JWT has been generated for the respective user, it should be added as a

'jwt' aribute within a stringified JSON object (format shown in javascript example
below). That object should then be base64 encoded.

4. After base64 encoding the authentication payload containing the user’s valid JWT,
you are ready to construct the full entry point URL. The full URL should adhere to the
following format where ${encodedPayload} would be replaced with the payload you
generated in step 2a.

https://poweredby.dosh.com/partners/solidfi/setup/${encodedPayload}

//<url>
//PROD-TEST: https://test-api.solidfi.com/v1/card/doshtoken
//PROD-LIVE: https://api.solidfi.com/v1/card/doshtoken

//add axios header
axios.defaults.headers.common['sd-person-id'] = <solid_person_id>;

axios.post(<url>, config)
.then(data => {

const base64encode = btoa;
let payload = {

jwt: data.accessToken,
};
//Enabling this will print integration related logs to the console
payload.debugLoggingEnabled = true

Page 17 of 18

https://test-api.solidfi.com/v1/card/doshtoken

Solid Merchant Funded Rewards - Powered by Dosh

const payloadString = JSON.stringify(payload);
const encodedPayload = base64encode(payloadString);
let url = 'https://poweredby.dosh.com/partners/solidFi/setup/';
url += encodedPayload;
window.open(url, '_blank');

});

Webhook Notifications

The following Webhook notifications are sent to the partner’s endpoint:

➢card.reward.pending - Sent upon qualifying Authorization transaction
➢card.reward.credit - Sent upon qualifying Seled transaction
➢card.reward.canceled - Sent upon transaction cancellation/return prior to

transaction selement

Page 18 of 18

